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Abstract 
 
This article expands upon “Toward Maximum Diversification” by Choueifaty and Coignard 
[2008]. We present new mathematical properties of the Diversification Ratio and Most 
Diversified Portfolio (MDP), and investigate the optimality of the MDP in a mean-variance 
framework. We also introduce a set of “Portfolio Invariance Properties”, providing the basic 
rules an unbiased portfolio construction process should respect. The MDP is then compared in 
light of these rules to popular methodologies (equal weights, equal risk contribution, minimum 
variance), and their performance is investigated over the past decade, using the MSCI World as 
reference universe. We believe that the results obtained in this article show that the MDP is a 
strong candidate for being the un-diversifiable portfolio, and as such delivers investors with the 
full benefit of the equity premium. 
 
° The authors can be reached at their firstname.lastname@tobam.fr 
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 Ever since its introduction in the 1960’s, the CAPM has come under intense scrutiny. In 

particular, the efficiency of the market capitalization weighted index has been questioned, with 

academics and practitioners offering numerous investment alternatives. In 1991, the seminal 

paper by Haugen and Baker, “The Efficient Market Inefficiency of Capitalization-Weighted Stock 

Portfolios,” concisely proclaimed that “matching the market is an inefficient investment 

strategy.” The authors argued that theory can still predict cap-weighted portfolios to be 

inefficient investments, even assuming that investors rationally optimize the relationship 

between risk and expected return in equilibrium, in an “informationally efficient” capital 

market. Putting theory into practice, Haugen and Baker presented one of the first empirical 

studies of the minimum variance portfolio. Over the 1972-1989 period, this portfolio delivered 

equal or greater returns compared to a broad market cap-weighted index of US stocks, while 

achieving consistently lower volatility, thus demonstrating the ex-post inefficiency of the 

market cap-weighted index. Nearly fifteen years later, Arnott, Hsu and Moore [2005] created 

indices with alternative measures of company size based on fundamental metrics. The authors 

showed such indices were “more mean-variance efficient” compared to market cap-weighted 

Indices, further challenging the CAPM. Subsequently, Choueifaty [2006] introduced the concept 

of maximum diversification, via a formal definition of portfolio diversification: the 

Diversification Ratio (DR). Choueifaty further went on to describe the portfolio which maximizes 

the DR – the Most Diversified Portfolio (MDP) – as an efficient alternative to the market cap-

weighted index.  
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 This article expands upon Choueifaty and Coignard [2008], which introduced the 

concepts of DR and MDP to a broad audience. First, we explore the mathematical properties of 

the DR. We also establish a new equivalent definition of the long-only MDP, and generalize the 

condition for the optimality of the MDP in a mean-variance framework. Next, we compare the 

MDP with three well-known long-only quantitative portfolio construction approaches: Equal 

Weighted; Equal Risk Contribution (Maillard, Roncalli and Teiletche [2010]); and minimum 

variance portfolios (Haugen and Baker [1991], Clarke, de Silva and Thorley [2006]). We 

introduce a set of basic invariance properties an unbiased portfolio construction process should 

respect, and then examine each approach in light of these properties, using synthetic examples. 

Finally, using one of the broadest equity universes available - the MSCI World - we study the 

four portfolios’ empirical performance over the past decade. 

Properties of the Diversification Ratio (DR) 

Choueifaty [2006] proposed a measure of portfolio diversification, called the 

Diversification Ratio (DR), which he defined as the ratio of the portfolio’s weighted average 

volatility to its overall volatility. This measure embodies the very nature of diversification 

whereby the volatility of a long-only portfolio of assets is less than or equal to the weighted 

sum of the assets’ volatilities. As such, the DR of a long-only portfolio is greater than or equal to 

one, and equals unity for a single asset portfolio. Consider for example an equal-weighted 

portfolio of two independent assets with the same volatility: its DR is equal to   , and to    

for   independent assets1. In essence, the DR of a portfolio measures the diversification gained 

from holding assets that are not perfectly correlated. We formalize this intuition by introducing 
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a formal definition as well as establishing several properties of the DR. Note that all portfolios in 

this paper are constrained to be long-only, unless otherwise noted2.  

We consider a universe of   risky single assets           , with volatility       , 

correlation matrix          and covariance matrix             , with         . Let 

       be the weights of a long-only portfolio,      its volatility, and              its 

average volatility. The Diversification Ratio       of a portfolio is defined as the ratio of its 

weighted average volatility and its volatility: 

      
     

    
 (1) 

DR Decomposition 

It is intuitive that portfolios with “concentrated” weights and/or highly correlated holdings 

would be poorly diversified, and hence be characterized by relatively low DRs. Here we 

formalize this intuition by decomposing the DR of a portfolio into its weighted-correlation and 

weighted-concentration measures. As shown in Appendix A, the DR decomposition is: 

                           
 

 

  (2) 

Where      is the volatility-weighted average correlation of the assets in the portfolio, 

     
                  

              
 (3) 

and       is the volatility-weighted Concentration Ratio (CR) of the portfolio, with: 

      
       

 
 

          (4) 
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A fully concentrated long-only portfolio has unit CR (a one asset portfolio), while an equal 

volatility weighted portfolio has the lowest CR, equal to the inverse of the number of assets it 

contains3. The CR introduces a generalization of the Herfindahl-Hischman index (HHI in Rhoades 

[1993]), used for example, by US authorities as a sector concentration measure. In effect, the CR 

measures not only the concentration of weights, but also the concentration of risks;  assets  are 

weighted proportionally to their volatilities.  

The above DR decomposition explicitly shows that the DR increases when the average 

correlation and/or the Concentration Ratio decrease. In the extreme, if correlations increase to 

unity, the DR is equal to one, regardless of the value of the Concentration Ratio, as portfolios of 

assets are no more diversified than a single asset. We note that when pair-wise asset 

correlations are equal, the DR varies only via the CR, and maximizing the Diversification Ratio is 

equivalent to minimizing the Concentration Ratio. 

DR Composition 

Determining the DR at the asset allocation level, for a multi-asset portfolio, is a 

potentially valuable tool for plan sponsors and their trustees. The DR Composition formula 

provides the overall DR of a portfolio, as a function of the DRs of its sub-portfolios. Consider   

long-only sub-portfolios with weight vectors             . Each sub-portfolio   has overall non 

negative weight   , volatility    and Diversification Ratio           . The DR Composition 

Formula established in appendix A provides the overall DR of the portfolio: 

      
            

    
 (5) 
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where   is defined as the element-wise product of two vectors. The above DR Composition 

formula shows that the DR of a portfolio is the volatility-weighted average of its sub-portfolios’ 

DRs, divided by its volatility4.   

DR as a measure of degrees of freedom 

We provide an intuitive interpretation of the DR, by first considering a universe of   

independent risk factors, and a portfolio whose exposure to each risk factor is inversely 

proportional to the factor’s volatility. Such a portfolio allocates its risk budget equally across all 

risk factors, and will have a DR squared (DR2) equal to  5. As such, its DR2 is equal to the 

number of independent risk factors, or degrees of freedom, represented in the portfolio. 

Therefore, the DR2 of any portfolio of assets can be interpreted as the number F of independent 

risk factors, necessary for a portfolio that allocates equal risk to independent risk factors, to 

achieve the same DR. As such, F can be interpreted as the effective number of independent risk 

factors, or degrees of freedom, represented in the portfolio. 

 For example, the DR of an index, such as the MSCI World, was 1.7 as of the end of 2010, 

implying that a passive MSCI World investor would have been effectively exposed to 1.72=2.9 

independent risk factors, in our interpretation.  Taking this a step further, if one seeks to 

maximize the DR, the resulting DR would equal the square root of the effective number of 

independent risk factors available in the entire market. At the end of 2010, this resulted in a DR 

of 2.6, or 6.8 effective degrees of freedom. An interpretation of this result is that the market 

cap-weighted index misses out on the opportunity to effectively diversify across about four 

additional independent risk factors. 
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The Most Diversified Portfolio (MDP) 

 The MDP is defined as the long-only portfolio that maximizes the Diversification Ratio: 

           
    

      

where     is the set of long-only portfolios with weights summing to one6. As shown in 

Appendix B, the long-only MDP always exists and is unique when the covariance matrix   is 

definite. Furthermore, the portfolio’s weights satisfy the first order condition: 

      
       

        
    (6) 

where the non negative (dual) variables   are such that                .  

The Core Properties of the MDP  

 An equivalent definition7 of the MDP, which we call the Core Property of the MDP (1), 

provides a very intuitive understanding of its nature: 

Any stock not held by the MDP is more correlated to the MDP than any of the 

stocks that belong to it. Furthermore, all stocks belonging to the MDP have the 

same correlation to it. 

This property illustrates that all assets in the universe considered are effectively represented in 

the MDP, even if the portfolio does not physically hold them. For example, an MDP portfolio 

constructed using S&P500 stocks, may hold approximately 50 stocks. That does not mean 

however that this portfolio is not diversified, as the 450 stocks it does not hold are more 

correlated to the MDP compared the 50 stocks it actually holds. This is consistent with the 

notion that the Most Diversified portfolio is the un-diversifiable portfolio. 
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The Core Property of the MDP (1) is established in appendix B with the help of the above 

first order condition. It is also equivalent to the following alternative definition, which is more 

involved, and forms the basis of its proof. For this reason, we call it the Core Property of the 

MDP (2): 

The long-only MDP is the long-only portfolio such that the correlation between 

any other long-only portfolio and itself is greater than or equal to the ratio of 

their DRs.  

Equivalently, for any long-only portfolio with weights  :  

        
     

        
  (7) 

Accordingly, the more diversified a long-only portfolio is, the greater its correlation with the 

MDP. Note that when the covariance matrix    is not definite, all portfolios satisfying the Core 

Property (1) or (2), equivalently maximize the DR. As such, equation (7) also shows that all 

solutions are equivalent, as they have a correlation of one between themselves. 

Optimality Properties of the MDP in a Mean-Variance Framework 

In this section, we explore a mean-variance framework where the MDP is the optimal, 

equilibrium portfolio. This ideal setting is of course far from reality. Note, however, that the 

assumptions entertained here are not prerequisites for the MDP’s outperformance in other 

contexts, in particular in the real world. 

Consider a homogeneous investment universe of single assets where we have no reason 

to believe, ex-ante, that any single asset will reward risk more than another. In this universe, 

the ex-ante Sharpe ratios of single assets are identical, and thus each asset’s expected excess 
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return (EER) is proportional to its volatility. Assume that a risk free asset is available, with 

rate   . Noting          the single assets’ returns, and   a positive constant; single assets’ EERs 

satisfy: 

                 (8) 

As such, for any portfolio of single assets with weights   , and return   : 

                          
           

Using the definition of the Diversification Ratio, we finally obtain: 

                        (9) 

Equation (9) shows that portfolios’ EERs are proportional to their volatilities multiplied by their 

Diversification Ratios8. Dividing both sides of this equation by      demonstrates that in this 

homogenous universe, maximizing the Diversification Ratio is equivalent to maximizing the 

Sharpe Ratio.  

Going a step further, assume that all CAPM assumptions hold as in Sharpe [1990], whose 

Nobel lecture includes a very clear, self-contained, expose of the CAPM. One central 

assumption is that “all investors are in agreement concerning expected returns and (asset) 

covariances”. When equilibrium prices are attained, both expected returns and covariances are 

determined in such a way that markets clear. Let us explore further the case where all investors 

also agree that single assets’ EERs are proportional to their volatilities. In this setting, assets’ 

EERs depend on volatilities and on the proportionality constant  9 (constant across assets). As 

such, assuming that equilibrium prices are attained, both asset covariances and the constant   

are determined in equilibrium. Providing that markets have cleared, the Security Market Line 

relationship still obtains10. Also, as a risk free asset is available, the portfolio of risky assets held 
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by all investors maximizes the Sharpe Ratio11, which in this particular situation also maximizes 

the DR, as EERs are proportional to volatilities. As a result, this portfolio is the MDP, and the 

Security Market Line relationship reads: 

               
  

    
             (10) 

It is demonstrated in appendix B that the correlation of any asset to the unconstrained MDP is 

the same. Noting      this correlation, we finally obtain the pricing equation: 

             
  

    
             (11) 

Naturally, this last result is consistent with the initial hypothesis that assets’ EERs are 

proportional to volatility. It also shows that in equilibrium12, the identical Sharpe Ratio of single 

assets is equal to the Sharpe Ratio of the equilibrium portfolio, the MDP, multiplied by the 

constant correlation of all assets to this portfolio. Importantly, it also demonstrates that we still 

have the original CAPM result that assets are rewarded in proportion to their systematic risk 

exposure, which in this setting corresponds to their exposure to the MDP. 

Comparison of Quantitative Portfolios 

Portfolio Invariance Properties 

We propose in this section a set of basic properties that an unbiased, agnostic portfolio 

construction processes should respect, based on common sense and reasonable economic 

grounds. A starting point is the fact that portfolios resulting from these processes are highly 

dependent upon the structure of the universe of assets considered. As such, it may be 

reasonable to require an unbiased process to produce exactly the same portfolio when 
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considering a universe equivalent to the original one. We formalize this idea in the following 

three Portfolio Invariance Properties: 

(1) Duplication Invariance: Consider a universe where an asset is duplicated (for example, due 

to multiple listings of the same asset). An unbiased portfolio construction process should 

produce the same portfolio, regardless of whether the asset was duplicated. 

(2) Leverage Invariance: Imagine that a company chooses to deleverage (leverage). All else 

equal, the weights allocated by the portfolio to the company’s underlying business(es) 

should not change, as its cash exposure is dealt with separately.  

(3) Polico Invariance: The addition of a positive linear combination of assets (for example, a 

leveraged long-only portfolio) already belonging to the universe (for example, the creation 

of a long-only leveraged ETF on a subset of the universe) should not impact the portfolio’s 

weights to the original assets, as they were already available in the original universe. We 

abbreviate “positive linear combination“ to read “Polico”. 

Comparison of well known quantitative approaches 

Among the alternatives to cap-weighted indices that have been proposed, we compare 

the Equal Weighted (EW), Minimum Variance (MV), Equal Risk Contribution (ERC) and Most 

Diversified Portfolio (MDP). These portfolios are related to cap-weighted indices, insofar as they 

are all fully invested, unlevered, long-only, and provide comparable access to the equity risk 

premium. The MV portfolio, for example, minimizes volatility across all long-only portfolios, 

with weights summing to one. We examine each of these portfolios in the context of the 

aforementioned Portfolio Invariance Properties. 
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We consider a simple universe {A,B} of two assets   and    with volatilities          

      , respectively and pairwise correlation        . For each of the above four 

approaches, their portfolio weights and risk contributions13 are: 

Portfolio 
Weights Risk contributions 

A B A B 

EW 50% 50% 71% 29% 

ERC 33% 67% 50% 50% 

MV - 100% - 100% 

MDP 33% 67% 50% 50% 

 

By construction, the EW portfolio sees its largest risk contributions coming from the most 

volatile asset, whereas the MV invests 100% of its holdings in the low-risk asset14. Only the MDP 

and ERC portfolios provide a truly diversified risk allocation in this case, as seen from their risk 

contributions. In the next three sub-sections, we examine whether these portfolio construction 

methodologies respect the Portfolio Invariance Properties. 

Duplication invariance  

Consider a new universe derived from the first one, where asset A is duplicated: {A, A, B}. 

Each of the four portfolios assigns weights as follows:  

Portfolio 
New weights 

New weights in the 
original assets 

Original weights 
Compliant 

A A B A B A B 

EW 33% 33% 33% 67% 33% 50% 50% no 

ERC 23% 23% 54% 46% 54% 33% 67% no 

MV           -              -    100% - 100% - 100% √ 

MDP 17% 17% 67% 33% 67% 33% 67% √ 
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Both the MV and MDP are duplication invariant, as their weights in the original assets are 

unchanged. The duplication invariance of the MV and MDP is true in general15. However, both 

the EW and ERC are not invariant, which shows that they are biased toward assets with multiple 

representations.   

Leverage Invariance  

Consider the new universe {LA, B} following the replacement of A with LA, a combination 

of ¼ A and ¾ cash. This leads to the following figures:       ,         and          , 

and to the corresponding  portfolio weights: 

Portfolio 
New weights 

New weights in the 
original assets 

Original weights 
Compliant 

LA B A B A B 

EW 50% 50% 20% 80% 50% 50% no 

ERC 67% 33% 33% 67% 33% 67% √ 

MV 100% - 100% - - 100% no 

MDP 67% 33% 33% 67% 33% 67% √ 

 

The MDP and ERC are leverage invariant. This is true in general, and is shown for the MDP in 

Appendix C. On the contrary, the EW and MV portfolio are not leverage invariant, as the former 

invests a smaller weight in asset A and the latter is now fully concentrated in asset A, and not B. 

This shows that both the MV and EW are biased with respect to assets’ leverage. 

Polico Invariance 

To illustrate Polico invariance, a Polico16 containing ½ A, ¼ B and ¼ cash is added to the 

new universe {A, B, Polico}, leading to               ,                 ,                  

and to the following  portfolio weights: 
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Portfolio 
New weights 

New weights in the 
original assets 

Original weights 
Compliant 

A B Polico A B A B 

EW 33% 33% 33% 55% 45% 50% 50% no 

ERC 21% 46% 34% 41% 59% 33% 67% no 

MV           -    69% 31% 17% 83% - 100% no 

MDP 33% 67% - 33% 67% 33% 67% √ 

 

The MDP is Polico invariant, as it does not select the Polico, and has unchanged overall weights. 

This general fact, demonstrated in appendix C, shows that the MDP is robust to the 

misspecification of the nature of Policos. In effect, the Polico was treated in this example as a 

single asset, and not as a portfolio (its DR was assumed to equal one). On the contrary, the EW, 

ERC and MV portfolios are not Polico invariant, as the EW and ERC are biased toward assets 

with multiple representations, and the EW and MV are biased with respect to leverage. Note 

that in this situation, the MV has positive weights on both A and B, due to the selection of the 

Polico. 

Summary of Results 

To summarize, we present the following table describing the invariance properties 

respected by each portfolio: 

Portfolio Duplication Leverage Polico 

EW no no no 

ERC no √ no 

MV √ no no 

MDP √ √ √ 

The MDP’s goal is to maximize diversification, and as such, to be unbiased. The fact that the 

MDP satisfies all three Portfolio Invariance Properties is consistent with this goal. The other 
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portfolios studied here make implicit bets. The EW and ERC portfolios reflect the belief that 

representativeness can only be achieved by investing in all stocks present in the universe. The 

EW and MV portfolios make implicit bets on companies’ leverage. 

Empirical Study 

In this section, we compare the performance of five long-only portfolios: Market 

Capitalization-Weighted Index (MKT), Equal Risk Contribution (ERC), Equal Weighted (EW), Most 

Diversified Portfolio (MDP), and Minimum Variance (MV).  

Our investment universe for backtesting is the MSCI World, which contains approximately 

1500 stocks, spread across developed markets globally. MSCI creates the well-known MSCI 

World Minimum Volatility Index (MsMV). The MsMV would seem a natural candidate for our 

MV portfolio since it is also constructed using the MSCI World universe. Its construction 

methodology is well documented by the index provider, with data available since the creation 

of the Euro, i.e., December 31st, 1998. However, a careful reading of MSCI’s Minimum Volatility 

Methodology reveals a complex set of minimum and maximum weight, country, sector and 

turnover constraints, and also minimum and maximum exposure to various risk factors. As a 

result, the MsMV may not be representative of a MV portfolio; for this reason we have 

implemented a simpler version of MV, in addition to the MsMV.  

The ERC, EW, MV and MDP portfolios were rebalanced semi-annually17, and stocks 

belonging to the MSCI Index were selected at each rebalancing date. In order to avoid liquidity 

and price availability issues in such a broad universe, we only considered at each rebalancing 

date, the top half of stocks by market capitalization18 (793 stocks on average, representing 90% 



16 
 

of the index capitalization). To allow for a fair comparison between our portfolios and MKT, we 

also built a synthetic market cap-weighted index labeled MKT/2, comprised of the top half of 

stocks ranked by market capitalization. For an appropriate comparison with the MsMV 

portfolio, we simply added a maximum weight, a regional constraint, as well as a turnover 

penalty to the MV and MDP construction19.  

In order to use data reflecting as much recent information as possible, we estimated the 

covariance matrices for the ERC, MV and MDP using a one-year window of past daily returns20, 

at each rebalancing date. To account for the impact of time zone differences, we developed a 

“Plesiochronous21 Correlation Estimator,” which allows for the joint estimation of asset 

correlations, while taking into account the time delay between observations22. As having fewer 

observations than the number of assets results in a non-definite covariance matrix, we have 

also considered using a basic, yet robust, method consisting of shrinking half of the correlation 

matrix towards the identity matrix23. Portfolios built using this method are labeled ERCPSD, 

MDPPSD and MVPSD. 

Finally, while it is straightforward to verify whether a portfolio has the ERC property, a 

direct implementation of the numerical optimization algorithms, as proposed in Maillard et Al. 

[2008], can require prohibitive computation time. For our purposes, we chose to implement the 

optimization problem (7) of their paper, which provides a unique, well-defined, long-only 

portfolio that respects the ERC property24.  

Performance  

The portfolios’ empirical performance is summarized in Exhibit 1. All portfolios outperform 

MKT, which is consistent with the documented inefficiency of market cap-weighted indices, 
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even when assuming unrealistically high all-in trading costs of the order of two percent25 to 

account for their higher turnover. The ERC, MV and MDP deliver significantly higher returns and 

lower volatility, whereas the EW outperforms the market cap-weighted index with comparable 

volatility. The ERC, in turn, functions as a risk-weighted version of the EW, with marginally 

higher returns and significantly lower risk. Among the portfolios with the lowest risk, the MsMV 

registers a modest performance advantage, with significantly less volatility than the cap-

weighted index. Its MV counterpart, which has fewer constraints, has the lowest realized 

volatility, with returns similar in magnitude to the ERC portfolio. 

Exhibit 2 provides performance for the ERCPSD, MDPPSD and MVPSD portfolios. Overall 

returns and volatilities are mostly unchanged26 compared to original versions of these 

portfolios. However, using the shrinkage method lessens turnover by 5 to 10%, with the MV and 

MDP portfolios holding 41 and 24 more stocks respectively. This can be expected, as shrunken 

correlation matrices are by design more stable over time, with the MV and MDP implicitly 

shrunk toward the equal-variance-weighted and equal-volatility-weighted portfolios. 

Unsurprisingly, the Market Cap-Weighted Portfolio has the lowest Diversification Ratio, 

given its high concentration in large cap stocks and risk factors27. The EW portfolio’s diversified 

holdings result in slightly higher diversification, albeit less than the other portfolios, which use 

asset covariance information. The MDP both presents the highest DR - its primary objective- 

and also the highest Sharpe Ratio. As such, it is the closest candidate to being the tangency 

portfolio. Overall, both the MV and the MDP come close to delivering on their respective 

claims: to minimize ex-post volatility for the former, and to maximize ex-post Sharpe ratio for 

the latter. 
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Fama-French Regression  

Exhibit 3 shows the results of a series of Fama and French [1993] 3-factor regressions for 

each portfolio construction methodology. The factors are labeled MKT for The MSCI World 

Gross USD index in excess of the 1 month LIBOR, HML for the performance difference between 

the MSCI World Value and Growth indexes, and SMB for the performance difference between 

the smallest 30% and the largest 30% of stocks by market capitalization. Month end data were 

used, with excess returns computed using US one-month LIBOR. Alphas are reported using 

annualized compounded returns.  

All non-market capitalization strategies28 have positive SMB factor exposure and are thus 

less biased toward large capitalizations stocks than the market cap-weighted index. 

Unsurprisingly, the EW has the largest exposure to SMB, both in terms of slope coefficient and 

statistical significance, as well as the largest market exposure of the strategies. For portfolios 

using a risk matrix (ERC, MMV, MV, and MDP), market exposures are substantially less than 

one, with the lowest being MV, followed by the MDP.  All of the strategies load positively on 

HML, with the MV showing the largest exposure, as measured by both factor loading and 

statistical significance, consistent with its bias toward low volatility (value) stocks. The MV and 

MDP exhibit the lowest R2, revealing that the market cap-weighted index and the other two 

factors fail to explain a relatively large part of the performance of these two portfolios. 

Interestingly, the MsMV shows a negative Fama-French alpha, indicating that the numerous 

constraints placed on its construction may in fact be destructive of value. Finally, the MDP 

delivers the highest alpha of the five strategies tested, indicating that the performance of the 

MDP is significantly higher than what its Fama-French factor exposures would predict. This is 
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consistent with the MDP’s goal of delivering maximum diversification, and thus a balanced 

exposure to the effective risk factors available in the universe. 

Conclusion 

In this paper, we have introduced additional properties of the Diversification Ratio and of 

the Most Diversified Portfolio (MDP), and proposed a basic set of rules an unbiased, agnostic 

portfolio construction process should respect: the Portfolio Invariance Properties. We find that 

the MDP adheres to these rules. Furthermore, using the MSCI World Index as a reference 

universe to compare the performance of the MDP with other approaches, we find that the MDP 

stands out, both in terms of relative performance and exposure to Fama-French factors.  

Classical financial theory defines the equity risk premium as the return of the un-

diversifiable portfolio. In developing the MDP, our goal was to articulate a theory and a 

consistent construction methodology that deliverer the full benefit of the equity risk premium 

to investors and their trustees, and we believe that our work shows that the MDP is a strong 

candidate for being the un-diversifiable portfolio. 
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The authors would like to thank Robert Arnott, Robert Haugen and Jason Hsu for their very 

helpful feedback, remarks and encouragements. We would also like to thank our colleagues at 
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 Appendix A 

DR Decomposition 

Noting         , where   is the element-wise product of two vectors, the variance of the 

portfolio with weights   can be written as: 

          
 

 

            

   

     
 

 

            

   

 

Noticing that:                         
 

  leads to: 

                   
 

 

          

 

 

 

 

Then, dividing this equality by          gives the decomposition: 

 

      
                     

DR Composition Formula 

With the overall holdings              , the overall average volatility reads:  

              

      

   

      

 

By inverting the summations, factorizing    and using the definition of the DR of each of the S 

portfolios and replacing        by        gives:                    . Then, dividing the 

result by the overall portfolio volatility      obtains the formula. 
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Appendix B  
 

MDP’s Existence and Uniqueness 

The MDP optimization is a Quadratic Programming problem (QP) on a convex set: thanks to the 

fact that the DR is invariant by scalar multiplication, this is equivalent to:     
 

 
      

constrained by      and         , with weights rescaled to sum to one afterwards. The 

existence follows; uniqueness as well if the covariance matrix is definite (see Berkovitz [2001], 

pp. 210—215). 

MDP’s First Order Conditions 

 
We first apply the KKT theorem: all admissible points qualify, according to the Linear 

Independence Constraint Qualification (equality and inequality are independent unless all the 

inequality constraints are active, which would mean that    ). The log of our positive 

objective function is:                         
 

 
         , with:     

 

     
  

 

 

 

      
     . The KKT theorem states that at optimal points   , there exists a vector      

and a scalar   such that: 

 
 

 
 

     
  

 

     
         

          
       

  

Multiplying the first condition on the left by the transpose of  , shows that   must be  , and 

that the first  condition is independent of the constraint that weights sum to one. This does not 

come as a surprise, as the DR is invariant by scalar multiplication. Call         ; an optimal 

point   is necessarily associated to  a vector      satisfying: 
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The Core Property of the MDP (2) 

We first show that the MDP respects the core property (2). By definition, the correlation of the 

MDP to any other portfolio reads:         
         

           
 . Given that             , with 

 
       

        
 , we have:         

 

            
   

 

 
    . Keeping in mind that   is non 

negative, for all long-only portfolios with non negative weights  , 

        
 

            
      , which leads us to the final result. We now prove that a 

portfolio    that respects the Core Property (2) necessarily maximizes the Diversification Ratio. 

As    respects the property (2), we have for all long-only portfolios:       
     

      
. Since 

correlations are not greater than unity, for all long-only portfolios:              , which 

shows that    maximizes the Diversification Ratio across all long-only portfolios.  

The Core Property of the MDP (1)  

Suppose that the MDP satisfies the Core Property (2). For any asset belonging to the MDP, the 

inequality given by the Core Property (2) becomes an equality as              . Since the 

DR of a single asset equals one, we have for any given asset    the MDP:          
 

        
. 

Now, using the Core Property (2) for any stock outside of the MDP, we finally obtain: 

          
 

        
          : the MDP satisfies the Core Property (1). 
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Conversely, suppose that a portfolio    satisfies the Core Property (1), for a given 

correlation       . Then for any long-only portfolio  : 

      
      

         
 

 

         
   

      

             

       

           

    
             

Applied with     , we have an equality. This shows that                 , and : 

                         

This demonstrates that     is the MDP, as it has Maximum Diversification across all long-only 

portfolios. Overall, this shows that the Core Property of the MDP (1) is equivalent to the Core 

Property of the MDP (2). 

Correlation of assets to the unconstrained MDP  

When removing the long-only constraint,      , and for all portfolios, possibly long-short: 

        
     

        
 . In particular, the correlations of all assets to the MDP are constant, and 

equal to the inverse of the MDP’s Diversification Ratio. 

Appendix C 

The MDP is Leverage Invariant 

The first order condition for the MDP can be rewritten by splitting the covariance matrix into 

volatilities and correlations:              . As volatilities are positive, this is 

equivalent to               with             and        . Now, applying a 

positive leverage vector             , the leveraged assets have the same correlation matrix 

  and volatilities          . The portfolio         is the MDP in the leveraged universe 
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(With   a positive normalization constant, such that        ), as it verifies the first order 

condition:                  with               . This means that       

     : the leverage invariance property is proved. 

The MDP is Polico Invariant 

The Core Property of the MDP (2) shows that the MDP is such that any asset not selected by the 

MDP has a correlation greater than 
 

       
. This means the MDP is unchanged by adding to the 

universe any asset with a correlation striclty greater than 
 

       
. Furthermore, if we consider 

any Polico  ,  we have:          
     

       
 

 

       
  as the DR of a Polico is greater than 1. 

This means that when the Polico is added to the universe, it is never selected, and the MDP 

remains unchanged (otherwise, we would have had          
 

       
 according to the 

Core Property (2)). 
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EXHIBITS 

Exhibit 1 
 
Comparison of quantitative portfolios Performances, 1999-2010. 
 

 
 

Exhibit 2 
 
Performances using a robust correlation matrix estimation method, 1999-2010. 
 

 
 
 
  

Statistic MKT MKT/2 MMV EW ERC MV MDP

Return 3.1% 2.9% 4.2% 5.8% 6.3% 6.7% 7.9%

Volatility (monthly) 16.6% 16.3% 11.7% 16.7% 13.1% 10.0% 11.4%

Volatility (dai ly) 17.2% 17.2% 12.3% 16.4% 12.9% 10.0% 11.2%

Turnover (one Way) 14% 11% 23% 29% 50% 76% 82%

Tracking Error (dai ly) 0.0% 0.8% 7.6% 3.6% 6.7% 10.4% 9.2%

DR (dai ly) 2.3 2.2 2.8 2.5 3.0 3.4 3.7

nbStocks (avg) 1,586 793 250 793 793 159 137

Sharpe (monthly) -0.00 -0.01 0.05 0.16 0.24 0.36 0.42

Sharpe (dai ly) -0.00 -0.01 0.06 0.16 0.24 0.36 0.43

Statistic ERCPSD MVPSD MDPPSD

Return 6.2% 6.7% 7.8%

Volatility (monthly) 13.4% 10.2% 11.5%

Volatility (da i ly) 13.2% 10.2% 11.3%

Turnover (one Way) 45% 66% 76%

Tracking Error (da i ly) 6.2% 10.1% 9.1%

DR (da i ly) 2.9 3.2 3.6

nbStocks (avg) 793 200 161

Sharpe (monthly) 0.23 0.35 0.41

Sharpe (da i ly) 0.24 0.35 0.41
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Exhibit 3 
 
Fama-French Monthly Regression Coefficients, 1999-2010. 
 

 

Exhibit 4 
 
Comparison of quantitative portfolios Performances. 
 

  

Portfolio MKT SMB HML Alpha R2

EW 0.96 0.41 0.06 0.04% 99%

t-s tat 132.28 21.63 4.33 0.09

ERC 0.71 0.41 0.14 0.14% 93%

t-s tat 40.60 8.99 3.99 0.20

MMV 0.65 0.15 0.19 -0.56% 87%

t-s tat 29.72 2.66 4.29 0.83

MV 0.46 0.23 0.23 1.35% 70%

t-s tat 16.32 3.15 4.02 0.83

MDP 0.57 0.31 0.16 2.26% 80%

t-s tat 21.29 4.35 2.85 1.46
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End Notes 

 
 
                                                      
1
In effect, the average volatility of the assets is equal to their common volatility, and the volatility of the portfolio 

equals their common volatility divided by the square root of the number of assets. We refer the reader to the 
“Definition of the Diversification Ratio” section of Choueifaty et al. (2008), for more examples. 
2
Definitions are provided accordingly. 

3
The Herfindal index attains its minimum value for an equal weighted portfolio. In our case, it suffices to rescale the 

portfolio weights by their associated volatilities to obtain this result. 
4
 This reads identically to the original definition, except that the sub-portfolio volatilities in its numerator are 

multiplied by their respective DRs (they would be equal to one for portfolios of single assets). 
5
In effect, noting c the proportionality constant between the weights of the portfolio and the inverse of the 

volatilities, the numerator of the DR equals c times F, while its denominator equals c times the square root of F.    
6
Note that this section treats the long-only constrained MDP. We refer the reader to the “Properties” section of 

Choueifaty et al. (2008), for results addressing the unconstrained (long-short) case. 
7
We show in appendix D that when the covariance matrix is definite, the MDP is the only portfolio respecting this 

property, which uniquely defines the MDP. When this is not the case, all portfolios respecting this property have 
maximal diversification, and are fully correlated. 
8
Assuming that single assets Sharpe ratios are constant clearly does not mean that all portfolios also have constant 

Sharpe ratios, as their Sharpe ratios are proportional to their DR, which value varies across portfolios. As such, 
there is no internal inconsistency as noted in Chow et al. (2010), when assuming that single assets  EERs are 
proportional to their volatilities and not those of portfolios. 
9
Assuming that single assets’ EERs are proportional to their volatilities does not mean that assets’ EERs are fixed 

prior to equilibrium, as they depend on the value of k which will be determined in equilibrium. In effect, equation 
(11) shows that in equilibrium, k is equal to the Sharpe Ratio of the MDP, multiplied by the constant correlation of 
all assets to the MDP. 
10

Using Sharpe’s notations, adding the assumption that EERs are proportional to volatility imposes the additional 
requirement that investors’ expectations are such that        . However, investors’ first order condition for 
portfolio optimality (2) in Sharpe’s lecture is unchanged, as is its aggregation over all investors (3), which form the 
basis for the CAPM’s pricing equation (5). Further assuming that a risk free asset is available leads to equation (8), 
which is the Security Market Line relationship we refer to in this paper. The requirement that        naturally 
carries over to this last equation. It remains to be seen however, whether equilibrium can be reached with such 
additional requirement. See also note 12. 
11

When a risk free asset is available with unlimited lending/borrowing, maximizing the mean variance utility 
function gives the same portfolio of risky assets, compared to directly maximizing the Sharpe ratio. The risk 
tolerance of the investor then determines the proportion of cash held. 
12

In this particular setting, any given market portfolio can be attained as the result of an equilibrium. It suffices for 
example that investors agree on zero expected correlations between assets, with expected volatilities being 
inversely proportional to the market portfolio’s weights. In such case, the Market Portfolio maximizes the Sharpe 
Ratio, as well as the DR. 
13

The risk contribution of an asset is defined here as the product of its portfolio weight and its marginal 
contribution to volatility, divided by the portfolio’s overall volatility.  
14

The fact that the Minimum Variance portfolio assigns a zero weight to asset A may come as a surprise, but there 
is no mistake here.  
15

Since the introduction of a redundant asset leads to a redundant equation in the first order conditions associated 
to the MV and MDP programs.  
16

As defined earlier, a Polico is a positive linear combination of assets (a leveraged long-only portfolio). 
17

 Portfolios are rebalanced at the end of May and November, as is the MSCI Minimum Volatility Index. 
18

At each rebalancing date, we eliminated all stocks with less than six months price history, and selected the top 
half of the remaining stocks by market capitalization. Local currency total returns were converted to USD, 
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according to the MSCI methodology, and MSCI’s official forex data used. Total Returns and Market Capitalization 
were obtained through Bloomberg. 
19

Having in mind MSCI’s methodology, we added a 1.5% maximum weight constraint, and a maximum weights by 
time zone (America, Europe, Asia), to ensure allocation to the zones do not exceed those of the MSCI World (MKT) 
by more than 5%. We also added a turnover reduction penalty to the MDP and MV objective functions, such that 
the annualized tracking error to the un-penalized problem was no greater than 1.5%. We did not add those 
constraints to the ERC portfolio, as they were generally satisfied in its unconstrained version. 
20

Having fewer observations than the number of assets results in a non definite covariance matrix. This was not an 
issue for the MDP and MV in the back tests presented here, as all portfolios contained fewer assets than 
observations (159 on average for the MV and 137 for the MDP), and were shown to be the unique solution of their 
optimization programs. 
21

Plesio means « near » in Greek, thus plesiochronous can be understood as “almost synchronous”.  We chose this 
term to represent the fact that even if the Japanese and US stock markets for example never trade simultaneously, 
their time delay is mostly constant. 
22

This estimator was developed in the spirit of the work done by Hayashi et al. [2005]. See also Hoffmann et al. 
[2009] for further references. 
23

This method produces positive-definite matrices with eigenvalues greater than 0.5, and associated covariance 
matrices that are also  positive-definite. We choose a high, constant, shrinkage intensity to ensure robustness. For 
references, see Ledoit et al. [2004], and Fabozzi et al. [2006], Chap. 9, p. 275. 
24

The solution is unique, providing of course that the covariance matrix is definite. We found that with a standard 
PC (Intel Xeon @ 2.66 Ghz with 8Gb of Ram), those optimizations required less than a couple of seconds to 
converge, even when considering one thousand assets. 
25

Unrealistic all-in trading costs of 3.4% (resp. 2.4%) would be needed for the MDP’s higher turnover to be such 
that its outperformance relative to the market cap benchmark reduces to zero (resp. for both the EW and ERC).  
26

This may come as a surprise to practitioners used to long-short portfolio optimizations, and to observe drastically 
different (and improved) results. However, the MV and MDP portfolios considered in this paper are long-only, and 
contain fewer assets than observations. As such, they are much less sensitive to the estimation errors of the 
covariance matrix. Also, the long-only constraint has already an effect similar to using a robust estimation 
technique. See Jagannathan at al. [2003], and Fabozzi et al. [2006], Chap. 9, p. 271. 
27

For example, the financial sector weighted 24.4% of the MSCI EMU, representing 34.6% of its total risk, on 
average, over the year 2010. 
28

The results obtained for the ERCPSD, MDPPSD and MVPSD are not reported, as they are extremely close to their 
original counterparts. The only noticeable change concerns the R2s of the regressions, which increase by a few 
percents. 


